首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7779篇
  免费   223篇
  国内免费   173篇
电工技术   144篇
综合类   293篇
化学工业   1749篇
金属工艺   475篇
机械仪表   801篇
建筑科学   860篇
矿业工程   385篇
能源动力   579篇
轻工业   239篇
水利工程   93篇
石油天然气   233篇
武器工业   77篇
无线电   446篇
一般工业技术   583篇
冶金工业   321篇
原子能技术   120篇
自动化技术   777篇
  2024年   5篇
  2023年   70篇
  2022年   136篇
  2021年   187篇
  2020年   159篇
  2019年   163篇
  2018年   160篇
  2017年   160篇
  2016年   186篇
  2015年   210篇
  2014年   426篇
  2013年   458篇
  2012年   453篇
  2011年   548篇
  2010年   421篇
  2009年   429篇
  2008年   375篇
  2007年   438篇
  2006年   408篇
  2005年   334篇
  2004年   331篇
  2003年   336篇
  2002年   262篇
  2001年   189篇
  2000年   168篇
  1999年   194篇
  1998年   170篇
  1997年   152篇
  1996年   117篇
  1995年   127篇
  1994年   86篇
  1993年   68篇
  1992年   50篇
  1991年   40篇
  1990年   26篇
  1989年   36篇
  1988年   16篇
  1987年   22篇
  1986年   10篇
  1985年   5篇
  1984年   11篇
  1983年   3篇
  1982年   5篇
  1981年   5篇
  1980年   2篇
  1977年   2篇
  1958年   6篇
  1957年   2篇
  1955年   1篇
  1954年   1篇
排序方式: 共有8175条查询结果,搜索用时 265 毫秒
1.
The effects of three types of salt including NaF, KCl, and NaCl on the properties of NiFe2O4 nanoparticles using salt-assisted solution combustion synthesis (SSCS) have been investigated. The synthesized powders were evaluated by SEM, TEM, FTIR, XRD, and VSM analysis. Also, the specific surface area (SSA), as well as size distribution and volume of the porosities of NiFe2O4 powders were determined by the BET apparatus. The visual observations showed that the intensity and time of combustion synthesis of nanoparticles have been severely influenced by the type of salt. The highest crystallinity was observed in the synthesized powder using NaCl. The SSA has also been correlated completely to the type of salt. The quantities of SSA was achieved about 91.62, 64.88, and 47.22 m2g-1 for the powders synthesized by KCl, NaCl, and NaF respectively. Although the magnetic hysteresis loops showed the soft ferromagnetic behavior of the NiFe2O4 nanoparticles in all conditions, KCl salt could produce the particles with the least coercivity and remanent magnetization. Based on the present study, the salt type is a key parameter in the SSCS process for the preparation of spinel ferrites. Thermodynamic evaluation also showed that the melting point and heat capacity are important parameters for the proper selection of the salt.  相似文献   
2.
Many bridges that lie within possible tsunami inundation zones are critical links in transport networks. Some efforts have been made to determine the effects of tsunamis on bridges, but only a limited range of published design guidelines are available. Therefore, it is necessary to further investigate the effects of tsunamis on bridges. In the current study, physical modeling experiments were carried out to measure bore impact forces and pressures for various tsunami bore strengths on a bridge deck with different abutment types (wing wall and spill-through) and different opening and submergence ratios. The experiments were conducted in a wave flume with dimensions of 14 × 1.2 × 0.8 m (length × width × height), equipped with an automatic gate designed to generate a tsunami bore. The horizontal and vertical forces showed an increasing trend with increasing submergence ratio for both types of abutment. However, the horizontal force showed a decreasing trend as the opening ratio decreased, while the vertical force initially increased as the opening ratio decreased, until it reached a peak value, and then it started to decrease. The overall shapes of the results for both types of abutment are similar, with higher values for spill-through abutments due to their lower energy dissipation rates. Based on the experimental data, empirical equations are proposed for estimation of tsunami loads as a function of opening and submergence ratios.  相似文献   
3.
Black phosphorus (BP), as a new 2D material, is normally synthesized by a high-pressure and high-temperature (HPHT) method from white and red phosphorus, which severely hinders the further development of BP for any potential applications and leads to search for other potential applications of BP with big challenge. Herein, we develop a facile and efficient Thermal-Vaporization-Transformation (TVT) approach to prepare a highly active BP directly grown on carbon paper as the electrode for Oxygen evolution reaction (OER), showing a low onset potential of 1.45 V versus RHE. Simultaneously, the current density of BP-CP illustrates the excellent electro-catalysis stability only decreases by 3.4% after continuous operation for 10000 s. Meanwhile, the density functional theory (DFT) calculations further illustrates the P-doped carbon layer in the upper side of BP layer is actually responsible for its enhanced OER property, and the adjacent carbon atoms of the embedded P atoms are actually the active sites due to the induced local change distribution by intramolecular change transfer. Considering the facile, but efficient and scalable, TVT approach can directly synthesize BP-CP with excellent OER performance, which is promising for BP electrocatalysts used for OER in metal-air batteries, fuel cells, water-splitting devices, even other key renewable energy.  相似文献   
4.
《Ceramics International》2022,48(22):33115-33121
As a critical topological phase transition material, SrFeOx could play an essential role in the field of resistive memory. How to implement resistance-switching more softly and ensure the stability of materials has always been a relevant research hotspot. Regulating the oxygen environment during the deposition process of the films can effectively control the stoichiometry of the functional layer and then improve the resistance-switching characteristics of the device. In this paper, a SrFeOx hetero-film was prepared by oxygen pretreatment on the SrRuO3 surface before SrFeOx deposition, and the as-assembled micrometer-scale device exhibits a low set operating voltage of 0.6 V and favorable cycling characteristics. The SrFeOx hetero-film reveals a vertical brownmillerite superlattice-like structure with ~20 nm perovskite buffer layer, which benefits the connection and rupture of conductive filament. Additionally, XPS and UV–vis were used to analyze the bonding energy and band gap of SrFeOx hetero-film, and offers the experimental basis for the explanation of the conductive mechanism. Therefore, the device based on SrFeOx hetero-film with low operation voltage provides a reference for low power consumption research on topological phase transition material.  相似文献   
5.
Given the continuing issues of environment and energy, methane dry reforming for syngas production have sparked interest among researchers, but struggled with the process immaturity owing to catalyst deactivation. This review summarizes the recent advances in the development of efficient and stable catalysts with strong resistance to coking and metal sintering, including the application of novel materials, the assessment of advanced characterizations and the compatibility to improved reaction system. One feasible option is the crystalline oxide catalysts (perovskite, pyrochlore, spinel and LDHs), which feature a fine metal dispersion and surface confinement effect via a metal exsolution strategy and exhibit superior reactivity and stability. Some new materials (h-BN, clays and MOFs) also extend the option because of their unique morphology and microstructure. It also is elaborated that progresses were achieved in advanced characterizations application, leading to success in the establishment of reaction mechanisms and attributions to the formed robust catalysts. In addition, the perspective described the upgrade of reaction system to a higher reaction efficiency and milder reaction conditions. The combination of efficient reaction systems and robust catalysts paves a way for a scaling-up application of the process.  相似文献   
6.
In porous reaction bonded silicon nitride, whiskers normally grow in globular clusters as the dominant morphology and deteriorate the pore interconnectivity. However, the ceramic microstructure was significantly transformed with the addition of MgO; specifically, the morphology was modified to a combination of matte and hexagonal grains. Microstructural observation along with thermodynamic studies suggest that MgO interfered with the presence and nitridation of SiO(g). Consequently, rather than being involved in the whiskers’ formation, surface silica instead reacted with volatile MgO to form intermediate products. Through these reactions, whisker formation was blocked, and a porous interconnected structure formed which was confirmed by 3D tomography. After heat-treatment at 1700 °C, β-Si3N4 crystallized in a glassy matrix containing magnesium. Resulting samples had an open-pore structure with porosity of 74–84 vol. %, and density of 0.48-0.75 g.cm?3. Combination of high porosity and pore size of <40 μm led to compressive strengths of 1.1–1.6 MPa.  相似文献   
7.
Relatively low efficiency is the biggest obstacle to the popularization of water electrolysis, which is a particularly feasible way to produce super-pure hydrogen. Imposing a magnetic field can increase the hydrogen production efficiency of water electrolysis. However, the enhancement's detailed mechanism still lacks an insightful understanding of the bubbles' micro vicinity. Our recent work aims to understand why the micro-magnetohydrodynamic (MHD) convection hinders single bubbles' detachment on the microelectrode. A water electrolysis experiment by microelectrode is performed under an electrode-normal magnetic field, and dynamic analysis of the single bubble growing on microelectrodes is performed. The variation of bubble diameter with time in the presence or absence of the magnetic field was measured, and the forces acting on the bubble were quantified. The result shows that the micro-MHD convection, induced by Lorentz force, can give rise to a downward hydrodynamic pressure force that will not appear in large-scale MHD convection. This force can be of the same magnitude as the surface tension, so it dramatically hinders bubbles' detachment. Besides, the Kelvin force provides a new potential way for further improving the efficiency of water electrolysis.  相似文献   
8.
《Soils and Foundations》2021,61(6):1529-1542
Biocemented soil columns were created at a reduced scale (mid-scale) using enzyme-induced carbonate precipitation (EICP) as a prelude to field scale deployment. Approximately 0.3 m diameter × 0.75 m long columns were created using a tube-à-manchette grouting technique in 0.6 m × 0.6 m × 1.2 m boxes filled with a dry washed quarry sand. Treatment solution composition and treatment protocol, including number of cycles of treatment and time interval between cycles, were established based upon laboratory testing. The urease enzyme used in the treatment solution was extracted from jack beans in a just-in-time manner on site. The biocemented soil columns were characterized in situ using shear wave velocity, needle penetrometer and pocket penetrometer testing, dimensional measurements, and by unconfined compression strength (UCS) and carbonate content measurements on specimens recovered from the columns. The in situ measurements indicated the target UCS of 500 kPa was achieved. However, the UCS tests on recovered specimens had inconsistent results, which may be attributed to sample disturbance. Overall, the results demonstrate that EICP is a viable method for creating biocemented soil columns for ground improvement.  相似文献   
9.
Polyoxymethylene dimethyl ethers are recognized as the prospective diesel additive to decrease the pollutant emission from the light-duty vehicles, which can be polymerize form the monomer of dimethoxymethane (DMM). The industrial synthesis of DMM is mainly involved two-step process: methanol is oxidized to form the formaldehyde in fixed bed reactor and then reacted with the generated formaldehyde through acetalization in continuous stirred-tank reactor. Due to huge energy consumption, this typical synthesis route of DMM needs to be upgraded and more green routes should be determined. In this review, four state-of-the-art one-step direct synthetic routes, including two upgrading routes (methanol direct oxidation and direct dehydrogenation) and two green routes (methanol diethyl ether direct oxidation and carbon oxides direct hydrogenation), have been summarized and compared. Combination with the reaction mechanism and catalytic performance on the different catalysts, the challenges and opportunities for every synthetic route are proposed. The relationships between catalyst structure and property in different synthesis strategy are also investigated and then the suggestions of the design of catalyst are given about future research directions that efforts should be made in. Hopefully, this review can bridge the gap between newly developed catalysts and synthesis technology to realize their commercial applications in the near future.  相似文献   
10.
It is important to extract texture feature from the ground-base cloud image for cloud type automatic detection. In this paper, a new method is presented to capture the contour edge, texture and geometric structure of cloud images by using Contourlet and the power spectrum analysis algorithm. More abundant texture information is extracted. Cloud images can be obtained a multiscale and multidirection decomposition. The coefficient matrix from Contourlet transform of ground nephogram is calculated. The energy, mean and variance characteristics calculated from coefficient matrix are composed of the feature information. The frequency information of the data series from the feature vector values is obtained by the power spectrum analysis. Then Support Vector Machines (SVM) classifier is used to classify according to the frequency information of the trend graph of data series. It is shown that altocumulus and stratus with different texture frequencies can be effectively recognized and further subdivided the types of clouds.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号